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Abstract-This paper presents the results of an experimental investigation of heat transfer by natural 
convection from a horizontal cylinder embedded in porous media consisting of randomly packed glass spheres 
saturated by either water or silicone oil. It is shown that the overall range of the Rayleigh number, Ra, can be 
divided into two subregions, called ‘low’ and ‘high’, in each of which the Nusselt number, Nu, behaves 
differently. It is demonstrated that the low Ra region corresponds to Darcy flow and the high to Forchheimer 
flow. Correlation equations for Nu for the Darcy regime are presented that account for viscous dissipation, and 
others for the Forchheimer regime that involve the first and second Forchheimer coefficients. T’he variation of 
properties with temperature and the wall effect on porosity (and consequently on heat transfer) are considered. 
The paper includes information concerning the resistance to flow in porous media that was obtained in 

conjunction with the heat transfer study. 

INTRODUCTION 

THE PRIMARY objective of the present investigation was 
to determine useful correlation equations for heat 
transfer by natural convection from horizontal 
cylinders embedded in porous media. This objective 
was accomplished by first obtaining a set of 
experimental heat transfer data and then analyzing this 
data in conjunction with an appropriate theory. In the 
course of this study it was found necessary to obtain 
certain information concerning the resistance to fluid 
flow exhibited by porous media. This fluid flow 
information is presented below following a review of 
literature that is relevant to the primary heat transfer 
problem. 

REVIEW OF THE LITERATURE 

Several analytical studies have been performed in 
recent years relating to the problem of steady two- 
dimensional natural convection about an infinitely 
long horizontal isothermal cylinder embedded in a 
porous medium of infinite extent. In most of these 
studies a curvilinear orthogonal coordinate system is 
used ; furthermore, it is assumed that Darcy’s law and 
the boundary-layer approximations are applicable, 
and that the gravitational force normal to the heated 
surface is negligible. With this formulation of the 
problem, Hardee [l] obtained the following expression 
for the Nusselt number based on the integral method : 

Nu = 0.465 Ru”~ (1) 

where Ra = Kg/?p,DAT/pu is called the Darcy- 
modified Rayleigh number. 

More recently, Merkin [2] obtained similarity 
solutions for natural convection porous layers adjacent 
to axisymmetric and two-dimensional bodies of 
arbitrary shape. In an unpublished note, which will be 

reproduced in the next section, Cheng [3] has modified 
Merkin’s analysis and applied it to the specific case of a 
horizontal isothermal cylinder. The result of this 
analysis is : 

Nu = 0.565 Ra”’ (2) 

which differs from equation (1) only in the magnitude of 
the numerical coefficient. 

Plumb and Huenefeld [S] have performed an 
analytical study of non-Darcy natural convection from 
vertical heated surfaces in porous media. More 
recently, Bejan and Poulikakos [S] analyzed the same 
problem in a manner that is relevant to the present 
study. Bejan and Poulikakos defined a new 
dimensionless group, G = C,v(C,g/IAT)- ‘12, that they 
say “describes the extent to which the flow departs from 
Darcy flow”. C1 and CZ are dimensional coefficients 
discussed in detail below. According to this criterion, 
the flow is governed by Darcy’s law when G is large (100 
or more) and gradually approaches non-Darcy flow as 
G -+ 0. The authors also describe an intermediate 
regime when G = O(1). 

Bejan and Poulikakos deduce that for non-Darcy 
flow the Nusselt number for heat transfer by natural 
convection from an isothermal vertical wall in contact 
with a porous medium is given by the following 
equation : 

Nu = 0.494(Ra,),?4 (3) 

where (Ra,), is a new Rayleigh number defined by 

(Ra,), = G. 
2 

Here y denotes the vertical Cartesian coordinate. This 
new Rayleigh number should not be confused with the 
Darcy-modified Rayleighnumber(Ru), = Kgj?yAT/va 
used consistently in natural convection studies 
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A, B 
a, b, c 
C 

NOMENCLATURE 

Ergun constants 
numerical constants 
Darcy coefficient [K- ‘1 

Greek symbols 
a effective thermal diffusivity 

% function of porosity, (1 -E)*/.? 

C,, C, Forchheimer coefficients B coefficient of volumetric expansion of 

% 
d 
D 
Ge 
Gr 

g 
h 

i 
k 
K 

m, n 
N 
NU 

P 
P’ 
Pr 

Q, 4 
Ra 

specific heat of fluid fluid 

(R4, 

Re 
sech 
T 

u, v 

diameter of glass spheres 
diameter of test cylinder 
Gebhart number, g/?D/c, 
Grashof number, KgflD(T, - T,)/v’ 
gravitational constant 
heat transfer coefficient 
numerical constant 
effective thermal conductivity 
permeability 

numerical constants 
number of data points 
Nusselt number, hD/k 
pressure 
negative of pressure gradient 
Prandtl number, pc,,/k 
heat transfer rate, heat flux 
Darcy-modified Rayleigh number, 

KgBD(T,- T&v 
Forchheimer-modified Rayleigh 
number, g/?D( T, - T,)/C,ctv 
Reynolds number, Dvfv 
hyperbolic secant 
temperature 
Darcian velocity components. 

function of porosity, (1 -s)/2 
temperature difference, T, - T, 
porosity 
Kozeny-Carman constant 
dynamic viscosity of fluid 
kinematic viscosity, p/p 
fluid density 
streamfunction. 

Subscripts 
talc quantity determined by calculation 

exp quantity determined by experiment 
S refers to conditions on a heated surface 
W refers to wall effect 
co refers to conditions far from a heated 

surface. 

Error notation 
E percent error, lOO(Nu,,,- Nu,JNu,,~ 
E(md) percent mean deviation of error, 

IF= 1 lEiI/‘N 
E(rms) percent root mean square of error, 

(c;= 1 Ef/N)1’2. 

involving Darcy flow. The subscript ‘co’ chosen for distance perpendicular to the surface. These two co- 
(Ra,), is intended to suggest that this new number ordinate systems are related by r = R + n and 0 = s/R, 
becomes representative when the traditional (Ra), where R is the radius of the cylinder. With these 
becomes sufficiently large. Bejan and Poulikakos also transformations, the governing equations in curvi- 
present a solution for the case of uniform wall heat flux. linear orthogonal coordinates are 

SIMILARITY SOLUTION FOR NATURAL 
CONVECTION WITH DARCY FLOW ABOUT 
AN ISOTHERMAL HORIZONTAL CYLINDER 

EMBEDDED IN A POROUS MEDIUM 

This section reproduces an unpublished note by 

Cheng [3]. 
The problem of natural convection with Darcy flow 

about an isothermal horizontal cylinder embedded in a 
porous medium is, in general, not amenable to an 
analytical solution. A similarity solution for the 
problem is possible, however, if a curvilinear 
coordinate is used and the boundary-layer approxim- 
ation is employed. To this end, the governing equations 
in cylindrical coordinates (I, 0) will first be transformed 
into a curvilinear orthogonal coordinate system (s, n) 
where s is the distance along the surface of the cylinder 
measured from the lower stagnation point and n is the 

(5) g+-g(,.;)v]=o 

u,_K 
[ 

R ap p R-tnas 
+pgsin $ 

( 11 (6) 
“=-$[~-pgcos(+)] (7) 

R aT aT R* a*T a2T 
--u-++vz=” R+n as MS+= 

1 
pc (8) 

+(R+n) an 1 
P = P,C~ -B(T- TcJl. 

Here u and D are the Darcian velocities in the s and n- 
directions,p is the pressure, T is the temperature, p is the 
density of the fluid, g is the gravitational acceleration, p 
and fl are the viscosity and thermal expansion 



coefficient of the fluid, and CI is the equivalent thermal 
diffusivity of the saturated porous medium. In this 
analysis viscous dissipation is neglected and hence does 
not appear in the energy equation, equation (8). 

If it is assumed that the thermal boundary layer 
adjacent to the cylinder is thin such that R >> n within 
the thermal boundary layer, then equations (5), (6) and 
(8) can be approximated as follows : 

(10) 

t4=-~[~+~~sin(~)] (11) 

ar aT 

[ 

a2T aT a2T 
u-+v~=” g+x+as’. 

as 1 (12) 
Eliminating p from equations (7) and (11) by cross 
differentiation and neglecting the gravitational force 
normal to the surface leads to the following equation in 
terms of the streamfunction : 

al* aZ* md . 
s+yQ= (13) 

where the streamfunction is defined by 

u=!!k and v=_!!!! 
an as . 

(1W-4 

Equation (9) in terms of the streamfunction is 

a* aT a+ aT --- --= 
an as as an 

t( -+-+-. 
[ 

a2T aT a2T 

an2 an as2 1 (13 
Equations (13) and (15) are the governing equations in a 
curvilinear coordinate system where the curvature 
effect has been neglected. Using the boundary-layer 
approximation, a2/as2 << a2/dn2 and afan << a2fh2, 
equations (13) and ( 15) become 

(16) 

-=_ (17) 

For an isothermal cylinder, the boundary conditions 
are 

n = 0: %O T=T 
as ’ s 

(Mb) 

2~0 T=T 
n+co’ an ’ m’ 

Wa,W 

Equations (16) and (17) subject to the boundary 
conditions (18) and (19) admit a similarity solution of 
the form 
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where f and 0 satisfy 

f” = 6 

p+L!Lo 
2 

with boundary conditions given by 

e(0) = 1, f(0) = 0 

(23) 

(24) 

(25a,b) 

B(co) = 0, f’(co) = 0. (26a,b) 

It follows from equations (14a), (20) and (22) that the 
streamwise velocity is given by 

u= 

where AT = K-T,. 

(27) 

Theprecedingequation shows that the velocity at the 
surface of the cylinder u, (corresponding to n = 0) is 
given by 

u, = 
O&AT sin s 

(28) 
P 0 K 

where the condition f’(0) = 1 obtained from equations 
(23) and (25) has been employed. 

Equations (23)-(26) are identical to the problem of 
natural convection about an isothermal flat plate in a 
porous medium which has been numerically integrated 
by Cheng and Minkowycz [6] who obtained e(O) = 
-0.444. With this value, the local surface heat flux is 
given by 

q(x)=--k E ( > ay y=. 

= 0444,,Tty $!!& . (29) 

The average heat flux can be obtained by integrating 
equation (29) to give 

q = 0.565 k(AT)3’2 

which can be rewritten as 

(30) 

Nu = 0.565 Ra’l’. (31) 

It is relevant to note that (31) is derived based on 
Darcy’s law with slip flow. Had the Brinkman model 
been used as the momentum equation with no-slip 
boundary conditions imposed, the value of Nu would 
be progressively lower than that given by (31) with 
increasing Rayleigh number. This lowering of Nu will 
be discussed in detail in a forthcoming paper. 

RESISTANCE TO FLOW IN POROUS MEDIA 

T-T 
WI) = * 

s m 

Introductory comments 

(21) 
In order to address the heat transfer problem with 

which this paper is primarily concerned it was 
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necessary to have prior knowledge of the resistance to 
the flow of fluids through porous media. The discussion 
of such flow resistance presented here is based upon 
previously published information and also upon 
recently obtained experimental evidence. 

Most investigations of the resistance to flow in 
porous media are predicated upon the assumption that 
there exist two domains of the Reynolds number, Re : 

the ‘lower’ domain within which viscous forces 
predominate and Darcy’s law holds, and the ‘higher’ 
domain within which inertial forces become significant 
and Darcy’s law does not hold. However, as Bear [7] 
points out, there also exists a value of Re below which 
Darcy’s law does not hold. The flow in this lowest range 
of Re will be referred to hereinafter as ‘pre-Darcy flow’, 
and the value of Re below which Darcy’s law does not 
hold will be designated by ReDL.* The existence of pre- 
Darcy flow is attributed to non-Newtonian behavior of 
fluids and the fact that the streaming potential 
generated by the flow, particularly in fine-grained 
media, can produce small countercurrents along the 
pore walls in a direction opposite to that of the main 
flow [7]. 

When a problem involves more than one of the 
domains discussed above, it becomes necessary to 
carefully delineate these domains, and also the 
transition from one domain to the next. Since, as will be 
shown, natural convection heat transfer in porous 
media constitutes just such a problem, the domains and 
transitions are discussed below, first in general terms 
and then quantitatively. 

General discussion 
Darcy’s law for one-dimensional flow through 

porous media may be stated as follows : 

p’= ; v 0 (32) 

where P’ is the negative of the pressure gradient in the 
direction of flow, v is the volume rate of flow per unit 
cross-sectional area or ‘Darcian speed’ (or simply 
‘speed’),t n is the viscosity of the fluid and K is a 
constant called the permeability of the porous medium. 
It will prove advantageous to multiply equation (32) by 
d/p, where d is a characteristic dimension of the porous 
medium ; thus 

P’d d _=- 
NJ K 

or 
P’d 
-=Cd 
Fv 

where C = K - ’ will be called the Darcy coefficient. 

*The subscript DL is a mnemonic device which refers to the 
lowest value(L) of the Reynolds number for which Darcy flow 
(D) occurs. Similar subscripts will be used to refer to the 
highest value (H) of the Reynolds number for which a 
particular kind of flow occurs. 

tThe term ‘velocity’ will be used in this connection when the 
context makes the intended meaning clear. 

A great deal of analytical and experimental effort has 
been expended upon the determination of K for various 
porous media. The following semi-empirical equation 
has been found to accurately represent many experi- 
mental data : 

K = (i&$x,)-’ ; 
(l-&)2 

% = 7 (34) 

where E is the porosity, S,, is the specific surface of the 
particles (surface area per unit volume) and K is an 
experimentally determined dimensionless constant 
called the Kozeny-Carman constant. For a porous 
medium composed of spheres of uniform diameter 
S,, = 6/d and hence 

d2 
K=---. 

361ca, (35) 

For a given porous medium, there exists a value of 
Re = Re,,H, usually between 1 and 10, above which 
the flow deviates from Darcy’s law; thus, Re,, is the 
highest value of Re for which Darcy’s law holds in a 
particular case. Darcy’s law, when plotted using 
coordinates as shown in Fig. 1, is represented by the 
horizontal line labeled ‘Eq. (33)‘. In this figure the solid 
line represents (qualitatively) the actual behavior of 
the porous medium; thus, Darcy’s law accurately 
represents the actual behavior of the porous medium 
from Re,, to ReD,. The pre-Darcy region is labeled ‘I 
in Fig. 1, and the Darcy region is labeled ‘II’. An 
important and relevant aspect of pre-Darcy flow is that 
within this region a finite value of P’ = Pb exists such 
that v = 0 when P’ < Pb. Thus, P’D/pv exceeds all 
bounds when P’ < PO. This behavior is indicated by 
the shape of the (truncated) solid line in Fig. 1 for 
Re < Re,,. 

If Re continually increases above Re,, a range is 

P' d 

P’u 

Cd 

Cld 

/ 

/( Eq.138) 
-q-_ 

Eq.(33) 

tOnQ=c2 

Re 

FIG. 1. Graph of P’d/p vs Re for porous media. 
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eventually encountered, designated by IV in Fig. 1 and reported in this paper are well below those needed to 
defined by Re,, 6 Re < Rem, wherein Forchheimer’s achieve turbulent flow, this region will not be discussed 
equation represents the flow : here in detail. 

p’ = (c,/A)u+(c,p)uz. (36) 

Here C, and C, are dimensional constants that will 
be referred to hereinafter as the first and second 
Forchheimer coefficients. The quadratic term in (36) is 
attributed to inertial effects. Ergun has suggested that 
the Forchheimer coefficients can be expressed as 
follows : 

Quantitative information 
The porous media used in the present study consisted 

of matrices of small soda-lime glass spheres saturated 
with either water or 20 Cs silicone oil. Formulas for the 
relevant thermophysical properties of this oil are 
provided in [8, Appendix]. The nominal diameters of 
the glass spheres were 2,3 and 4 mm. Kim [9] packed 
quantities of each of these three sixes of glass spheres 
into the test section (8.66 cm I.D. by 45.72 cm long) of a 
water tunnel and determined the resistance to flow in 
these porous media by accurately measuring the 
pressure drop across the test section corresponding to 
different imposed velocities of flow of water. The 
temperature of the flowing water was measured in 
order to ascertain its viscosity and density. The relevant 
results determined from these measurements are 
displayed in Table 1. The entries in Table 1 incorporate 
corrections designed to compensate for the ‘wall effect’ 
caused by the unavoidable non-random distribution of 
glass spheres near a boundary. Table 1 does not contain 
a value for Re,, because the apparatus used by Kim 
could not accurately measure the extremely low 
pressure gradients and velocities that pertain to pre- 
Darcy flow. The values of the parameters listed in Table 
1 were used in the subsequent analysis of the heat 
transfer data obtained in this study. 

and 

(374 

(3W 

where A and B are universal experimentally- 
determined dimensionless constants (referred to here- 
inafter as the first and second Ergun constants), d is 
a characteristic dimension, and E is the porosity of the 
medium. As was done in the case of Darcy’s law, 
equation (36) can be multiplied by d/p with the result : 

E = C,d+C,Re 
V 

or 

(38W 

A plot of equation (38) is the inclined straight line in 
Fig. 1. The flow for which (38) represents the actual 
behavior of a porous medium will hereinafter be called 
Forchheimer flow, corresponding to region IVin Fig. 1, 
wrth lower and upper bounds ReF, and Re,,. Between 
the regions of Darcy flow (II) and Forchheimer flow 
(IV) is a transition region, labeled ‘III’ in Fig. 1, with 
lower and upper bounds Re,, and Re,,. 

The curve representing transition from Darcy to 
Forchheimer flow (region III of Fig. 1) represents a 
problem vis-ri-vis the analysis of data because the 
equation of this curve is a complex function (compared 
to the functions in both the Darcy and Forchheimer 
domains). This problem can be avoided without 
incurring significant error by assuming that Darcy’s 
law holds beyond Re, to a value designated by ReDF at 
which point fully-developed Forchheimer flow is 
assumed to occur. Thus, ReDF represents an (artificial) 
point of abrupt transition from Darcy to Forchheimer 
flow. 

Experiments conducted in conjunction with the 
present investigation reveal the existence of a region 
labeled ‘V’ in Fig. 1, called post-Forchheimer flow, in 
which turbulence effects become significant and, at 
sufficiently high values of Re, dominate the flow. The 
symbol Re,, represents an (artificial) point of abrupt 
transition from Forchheimer to turbulent flow. Since 
the velocities attained in the heat transfer experiments 

HEAT TRANSFER APPARATUS AND 
EXPERIMENTAL PROCEDURE 

The heat transfer measurements made in the present 
study were performed using the electrically-heated test 
specimen and thermally-insulated cylindrical stainless- 
steel tank (0.1945 m I.D. by 1.27 m high) described in 
[8]. The test specimen was inserted diametrically in the 
tank between two vertical baffle plates as shown in Figs. 
2 and 3. The test specimen (1.45 cm O.D.) has an inde- 
pendently-heated central test section that is 2.540 cm 
long flanked by a pair of contiguous independently 
heated ‘guard’ sections, each of which is 3.050 cm long. 
Thus, the overall heated length of the test specimen is 
8.650cm, which equals the distance between the vertical 
baffles in the tank. Heat transfer data were recorded 
only for the centrally-located test section. The purpose 

Table 1. Information on the resistance to flow in porous media 

d(m) 0.002098 0.003072 0.004029 

Cd(m-:x 10V5) 
0.3570 0.3600 0.3580 
8.321 5.497 4.289 

K(m2 x log) 2.521 5.589 9.395 
C,d(m-’ x lo-‘) 7.879 5.204 4.060 
C,(m-’ x 10m3) 12.93 8.578 6.671 

K = 5.34, Re,, = 2.1kO.1, Re,, = 3, A = 182, B = 1.92, 
ReF, = 5.OkO.5, Re, = 100, Re,, = 8Ok 5. 
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of the guarded test section design and baffle 
arrangement was to create experimental conditions 
that closely approximate the two dimensional 
temperature and velocity fields corresponding to an 
‘ideal’ infinitely long heated cylinder in an infinite 
medium. That this experimental system does, indeed, 
closely approximate the ideal case for natural 
conoection in liquids, was verified as reported in [8] ; 
whether the approximation is also close in the present 
case involving porous media was investigated by 
performing certain experiments described below. 

The steady-state bulk temperature of the porous 
medium, T,, was measured by means of a single 
thermocouple located directly below the test specimen 
as shown in Fig. 2. The steady-state surface 
temperature, K, of the test section, corresponding to 
arbitrarily imposed overall rates of heat dissipation Q, 
was measured by averaging the readings of two 
thermocouples located below the surface of the test 
section and correcting this average by subtracting the 
temperature drop due to the radial conduction of heat 
to the surface. Since the test specimen has a copper core, 
it is nearly isothermal. In order to reduce the errors 
introduced by the small variation of the temperature 
difference AT = (T, - T,) around the periphery of the 
test section upon the reported results, the specimen was 

t I hl.1 
Cold W.stY 

A. Test Cyltnder 
B. Porous Medwm Reservoir 
C. Thermocouple Probe 
D Stainless Steel Baffles 
E Perforated Bottom Plate 
F Dram 
G Heat Exchanger Cm 
H.Thermally Insulated Tank 
I. Electrml Leads 
J Pressure Gauge 

23 

I 

==nl 

FIG. 2. Schematic vertical cross-sectional view ofexperimental 
apparatus. 

D 

A Test Cylinder 

B. Stainless Steel Baffles 
C S~lmne Rubber Seal 

D. Insulated Tank Wall 
E. Perforated Bottom Plate 
F Electrical Leads 

FIG. 3. Schematic top view of experimental apparatus. 

rotated around its axis and left in that angular position 
which corresponds to a value of AT equal to the 
integrated mean value of AT for a complete revolution, 
as was done in [8]. During this procedure the tank 
contained only liquid (water) because the presence of a 
porous medium would have prevented the rotation of 
the test specimen. 

The volume of the tank contained between the 
vertical baffle plates was filled with glass spheres to 
various depths, and this space became the porous 
medium (called ‘porous reservoir’) when the tank was 
filled with water or oil. The porous reservoir was 
bounded below by a perforated stainless-steel plate 
covered by screening material which supported the 
glass spheres yet allowed the flow of fluid upward into 
the porous reservoir. The space in the tank outside the 
porous reservoir allowed recirculation offluid. A coiled 
heat exchanger installed near the top of the tank as 
shown in Fig. 2 removed the heat dissipated by the test 
specimen. The tank was pressurized to about 5 atm 
when tests using water were performed, in order to 
prevent the formation of bubbles of vapor or air. Tests 
employing oil were performed at atmospheric pressure. 

The physical characteristics of the three sizes of glass 
spheres (nominal diameters: 2, 3 and 4 mm) used to 
create the porous media employed in this study were 
analyzed by Phan [lo]. By carefully measuring the 
density of the spheres and weighing individually a 
statistically large number (100 or more) ofeach size on a 
high precision balance, Phan determined that the 
average equivalent mean diameters of the three sizes 
were 2.098, 3.072 and 4.029 mm, respectively. He also 
determined the following formula for the thermal 
conductivity of the spheres, based upon published 
information for soda-lime glass : 

k, = 1.00416+ 1.6736 x 10-3T-4.184 x 10-6TZ (39) 
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where T is the temperature in “C and k, is expressed in 
wm-1 “c-1 

The effective conductivity of a porous medium was 
defined by the following formula : 

k = ek,+(l-e)k, (40) 

where E is the porosity and k, and lq represent the 
thermal conductivities of the glass spheres and 
saturating fluid, respectively. 

Two kinds of heat transfer experiments were 
performed. The objective of the first kind, called 
‘preliminary tests’, was to determine whether the 
porous reservoir was sufficiently large to adequately 
represent an infinite medium; the second kind, called 
‘primary tests’, consisted of steady-state measurements 
of T, and T, corresponding to various imposed overall 
rates ofheat transfer Q. The temperature measurements 
made are estimated to be correct to within O.O3”C, and 
the measurements of Q are correct to within 0.1%. 

A sketch which shows graphically the definitions of 
certain spatial parameters used for the preliminary tests 
is shown in Fig. 4. As indicated, the distance W denotes 
half the width of the porous reservoir, HI denotes the 
height of the reservoir above the centerline of the test 
specimen, and Hz denotes the depth of the reservoir 
below the centerline ofthe test cylinder whose diameter 
is denoted by D. The total height H of the porous 
reservoir is equal to (H, + H,) and the maximum value 
of H equals the height B of the baffle plates. Two sets of 
baffles were used having lengths B = 25 and 50 cm, 
respectively. Since Hz = B/2 in all cases, the use of these 
two sets of baffles provided two experimental values of 

Hz and, consequently, two values of Hz/D, specifically, 
11.1 and 22.2. Both sets of baffles had the same width, 
which was selected so as to insure that the distance 
between the baffles was equal to the total heated length 
(8.640 cm) of the test cylinder; thus, the distance 
between baffles was not varied in these tests. The values 
ofH, and Wand,consequently,ofH,/Dand W/D,were 
varied between fairly wide limits as described in the 
following. 

It was easy to vary HI/D experimentally-the space 
between the baffles was simply filled with glass spheres 
until the desired value of H, was attained. The 
experimental range of H,/D was from 1.1 to 11.1. In 
order to vary W experimentally, a number of solid 
plastic bars were placed between the baffles 
symmetrically with respect to the test specimen as 
shown in Fig. 4. The bars had lengths equal to B (25 cm), 
widths equal to the distance between baffles (8.64 cm) 
and thickness equal to 1.27 cm (0.5 in.). The value of W 
was changed (increased) by withdrawing the plastic 
bars symmetrically in pairs and filling the space 
previously occupied by the bars with glass spheres. The 
experimental range of W/D was from 1.2 to 8.5. 

The purpose of varying the spatial parameters 
defined above was to determine experimentally the 
minimum values of the parameters above which the 
heat transfer data would become independent of these 
parameters. It was reasoned that, if all minimum values 
of the spatial parameters were exceeded in an 
experiment-the satisfaction of these conditions 
constitutes what will be called a ‘criterion for an infinite 
porous medium’-then, for this experiment, the porous 

A. Test Cylinder (Diameter D) 
6. Gloss Spheres 
C. Perforated Bottom Plate 

coincident with bottom 
edges of baffle plates 
(Hz’ B/2 -see note) 

D. Tank Wall 
E. Plastic Spacers used to 

vary w 
F. Upper surface of glass spheres 

Note: Baffle plates(height B) are not 
shown here. Their top and bottom 
edges ore at distance B/2 above 
and below the cylinder axis. 

FIG. 4. Sketch of porous medium reservoir showing definitions of certain special parameters 
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57 q = 43.75 kW/rn2 

56 P = 
0 

2 12- 
q=2.19 kW/rn* 

0 
11 - 

10 - 

9- 
dz3mm 
D 0.01145 m z 

‘0 1 2 3 4 
W/D” 

6 7 8 9 

FIG. 5. Plot of AT vs W/D for two values of q. 

reservoir closely approximated the ideal case of an 
infinite medium. 

EXPERIMENTAL RESULTS AND DISCUSSION 

Preliminary data 
Figure 5 shows graphically the results of the 

preliminary tests made with water as the saturation 
fluid and with varying WJD for two different values of 
heat flux q and with H,JD = HzJD = 11.1. The 
behavior of ATin both cases is qualitatively similar : the 
curves for AT have local minima, which implies an 
enhanced heat transfer coefficient,* and AT is very 
nearly constant for WJD 3 4.4. Figure 6 is a plot of AT 
vs H,/D for W/D = 8.8 and q = 21.99 k W m-*. Here, 
too, AT is very nearly constant when the spatial 
parameter, in this case H l/D, is equal to or greater than 
4.4. A pair of tests with the same q and H,/D = 11.1 and 
22.2 (and with H,fD = H,JD) yielded identical 
measurements of AT. No preliminary tests were 
performed with oil. 

Primary data 
The primary heat transfer tests were conducted in 

porous reservoirs with WJD = 8.8 and H,JD = H,JD 
= 11.1 or 22.2 ; therefore, based upon the results of the 
preliminary tests reported above, the ‘criterion for an 
infinite porous medium’ was satisfied for experiments 
with water insofar as the values of w HI, and H, are 
concerned. However, the distance between the baffles 

*This enhancement has been dubbed the ‘chimney effect’. 
Sparrow and Pfeil [ 1 l] have reported a similar effect. 
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FIG. 6. Plot of AT vs HJD. 

(8.640 cm) could not be varied in the present study due 
to the physical limitations of the apparatus. Therefore, 
the criterion for an infinite porous medium could not be 
conclusively established relative to distance along the 
axis of the test specimen. However, judging from the 
results of the preliminary tests with varying w it is 
concluded that the porous reservoirs used to obtain the 
primary water data of this study approximate infinite 
media sufficiently well as to render these data 
representative of the corresponding ideal case. 

The primary heat transfer data and relevant 
dimensionless parameters are listed in Tables 2 and 3. 
All thermophysical properties that appear in dimen- 
sionless parameters were evaluated in this study at 
reference temperatures defined as follows : 

Tj= T,+j(T,-T,); O<j< 1. (41) 

Obviously, when j = 0.5, Tj is the mean film 
temperature. The reference temperatures employed 
herein are identified by specifying the value of j. In 
Tables 2 and 3 the test identifier (ID) consists of a 
number followed by a letter (S or W) plus another digit 
(2,3 or 4). The letter S refers to tests conducted with 20 
Cs silicone oil as the fluid medium and W refers to tests 
conducted with water. The final digit refers to the 
nominal glass sphere diameter (in millimeters) used to 
form the porous matrix for the indicated test ; thus, for 
example, the sequence 9W3 identifies the ninth test 
performed using water as the fluid medium and 3-mm 
glass spheres as the matrix of the porous medium. 

First correlation : j = 0.5. Based upon the theoretical 
result embodied in equation (31) and also upon 
previously published correlation equations for natural 
convection from horizontal cylinders (for example, as 
reported in [8]), it was conjectured that at least some of 
the data listed in Table 2, could be correlated by an 
equation of the form : 

Nu=cRa”Prb; j=O.5 (42) 

where c, a and b are constants, Ra is the Darcy-modified 
Rayleigh number and Pr is the Prandtl number. 

In order to determine for which tests (42) would 
represent the data, and, having done so, to then 
determine the numerical values of the constants, the 
following procedure was followed. First, a log-log 
graph of all the experimental values of Nu vs Ra was 
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Table 2. Experimental data and heat transfer parameters forj = 0.5 

Test 
ID* (2) (Wm-’ “C’) Nu Ra Pr Whnax Ge x lo9 

1w2 28.45 22.20 69.52 0.8968 2.424 
2w2 31.80 21.81 109.0 1.403 4.212 
3W2 36.03 22.05 155.7 1.996 6.627 
4w2 44.33 21.81 241.8 3.080 12.91 
SW2 53.51 21.93 344.8 4.359 21.95 
6W2 66.71 22.05 487.5 6.104 39.44 
7w2 85.34 22.05 688.1 8.507 74.14 

lW3 21.11 20.13 33.50 0.4364 0.623 
2W3 22.35 20.92 38.27 0.4975 0.977 
3w3 26.05 21.36 92.64 1.200 3.665 
4w3 29.25 21.68 143.9 1.858 6.572 
5w3 32.81 21.47 192.0 2.472 10.81 
6W3 39.28 21.24 301.9 3.868 20.16 
JW3 47.47 21.72 422.8 5.380 35.01 
8W3 58.35 20.68 578.0 7.299 62.24 
9w3 76.52 21.31 788.8 9.828 125.0 

lOW3 91.71 21.19 925.7 11.42 197.9 

lW4 22.42 21.66 43.20 0.5607 0.896 
2W4 21.98 20.87 49.30 0.6405 1.255 
3w4 24.82 21.36 125.6 1.627 4.368 
4w4 27.73 21.93 187.8 2.425 8.148 
5w4 28.63 19.95 250.9 3.244 11.81 
6W4 35.35 20.97 378.7 4.864 24.30 
7w4 42.46 21.72 525.0 6.699 42.42 
8W4 54.28 21.24 659.0 8.336 85.77 
9w4 79.17 21.49 944.0 11.73 228.8 

lS3 24.92 21.91 36.11 0.5757 0.169 
2S3 29.91 22.15 41.73 0.6632 0.459 
3s3 34.57 22.70 45.84 0.7262 0.727 
4s3 44.61 22.68 49.64 0.7815 1.456 
5s3 60.05 22.78 58.43 0.9118 2.791 
6S3 69.81 23.09 69.86 1.084 3.772 
7s3 83.30 22.42 89.46 1.379 5.391 
8S3 95.86 20.40 108.3 1.660 7.192 
9s3 110.8 23.04 124.1 1.877 9.409 

4.163 0.1068 
4.016 0.1924 
3.808 0.3194 
3.473 0.6832 
3.140 1.287 
2.744 2.653 
2.310 5.949 

4.696 0.03561 
4.574 0.05729 
4.340 0.2267 
4.155 0.4248 
3.989 0.7279 
3.707 1.463 
3.363 2.803 
3.029 5.544 
2.521 13.43 
2.205 24.40 

4.523 0.06972 
4.595 0.09612 
4.403 0.3493 
4.216 0.6806 
4.273 0.9734 
3.890 2.202 
3.552 4.215 
3.139 9.663 
2.454 33.14 

38.76 0.001173 
36.75 0.003366 
34.92 0.005621 
31.68 0.01246 
27.40 0.02783 
25.02 0.04136 
22.37 0.06657 
20.47 0.09776 
17.74 0.1484 

6.949 
7.331 
7.890 
8.847 
9.876 

11.23 
12.95 

5.662 
5.949 
6.518 
6.985 
7.416 
8.187 
9.193 

10.26 
12.09 
13.42 

6.062 
5.890 
6.351 
6.818 
6.675 
7.673 
8.620 
9.885 

12.35 

73.36 
73.40 
73.44 
73.52 
73.65 
73.73 
73.83 
73.92 
74.07 

*The first digit indicates the test number; W = water, S = 20 Cs silicone oil; the final digit indicates the 
nominal glass-sphere diameter (mm). 

made.Thisgraphrevealed that,withinacertainportion that Darcy flow occurs in the low range of Ra and that 
of the overall experimental range of Ra, the plotted Forchheimer flow occurs in the high range, wherein the 
points defined a pair of straight lines, one for water and seven ‘high’ data points 7W2; 8,9,1OW3; 7,8,9W4 lie. 
one for oil. These particular points (23 in number: one The validity of this hypothesis was tested by 
through 6W2; one through 7W3; one through 6W4; determining for each heat transfer test a representative 
six through 9S3) were then used to find the optimum Reynolds number, designated by (Re),,, based upon 
values of the numerical constants in equation (42) using thecharacteristicdiameter oftheglassspheresd and the 
a computer regression program. The optimum values maximum velocity along the surface of the test 
of the constants were found to be c = 0.679, a = 0.646 specimen, designated by urnax and calculated from 
and b = -0.126 with which (42) becomes equation (28) to be as follows : 

Nu = 0.679 Ra0.646 Pr-“.126; j = 0.5. (43) 

Figure 7 shows a log-log plot of Nu Pro.126 vs Ra for 
all the data in Table 2. This figure reveals that the 
overall range of Ra can be subdivided into two 
subranges, designated ‘low’ (Ra less than approx. 40) 
and ‘high’, within each of which the heat transfer 
parameter Nu * Pro.’ 26 behaves differently. The 23 data 
points for which equation (43) is an accurate repre- 
sentation fall in the low range. It was hypothesized 

Thus, 

K&AT 
%lUU =-. jzCJ.5. 

v ’ 

(Re),, = 7; j = 0.5. (45) 

If(Re),, is chosen successively equal to ReD, = 3.0 and 
Re, = 100, then equation (45) provides the following 
criteria for determining whether Darcy or Forchheimer 
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FIG. 7. Log-log plot of Nu Pr”.lz6 vs Ra; j = 0.5. 

theory is applicable : Table 3. Heat transfer parameters for j = 0.32 

for Darcy theory : ReDL < (Re),,, < 3* (46) 

for Forchheimer theory: 3 < (Re),,,ax < 100. (47) 

Test 
ID* Nu Ra Pr (Re),,, Ge x lo9 

The values of (Re)_ listed in Table 2 confirm the 
hypothesis that Forchheimer theory is applicable to the 
seven ‘high’ data points and Darcy theory is applicable 
to the rest of the data. The deviation of the seven ‘high 
data points from the straight line in Fig. 7 can be 
attributed to the combined inertia effect and the no-slip 
boundary condition mentioned below equation (3 1). It 
is easily shown that (Ra),,, = DPr(Re),,Jd. 

6.651 
6.865 
7.259 
7.885 
8.607 
9.579 

10.82 

It may be worthwhile to mention that equations (46) 
and (47) can be converted into equivalent statements 
involving a suitably defined Rayleigh number, (Ra),,,; 
however, this is not only superfluous but possibly 
misleading, inasmuch as it is the Reynolds number-not 
the Rayleigh number-that is the primary determinant 
of the kind of flow that exists in a particular situation. 

5.612 
5.877 
6.289 
6.625 
6.889 
7.384 
8.115 
8.770 

10.14 
11.12 

Having established the applicability of Forchheimer 
theory to the seven ‘high’ data points, these data were 
then correlated by adopting the following hypothesis : 

lW2 0.8985 2.268 
2w2 1.407 3.804 
3W2 2.005 5.803 
4W2 3.100 10.66 
5W2 4.398 17.28 
6W2 6.178 29.40 
7W2 8.642 52.08 

lW3 0.4365 0.615 
2W3 0.4977 0.959 
3w3 1.202 3.474 
4W3 1.862 6.062 
5W3 2.481 9.637 
6W3 3.889 17.08 
7W3 5.420 28.36 
8W3 7.376 47.23 
9W3 9.969 89.40 

lOW3 11.167 135.6 

lW4 0.5608 0.888 
2W4 0.6408 1.237 
3W4 1.629 4.196 
4W4 2.429 7.650 
5W4 3.253 10.71 
6W4 4.885 21.09 
7W4 6.740 35.40 
8W4 8.413 66.73 
9w4 11.90 162.6 

4.281 0.09712 
4.196 0.1662 
4.043 0.2633 
3.810 0.5137 
3.555 0.8933 
3.234 1.673 
2.859 3.359 

4.718 0.0350 
4.605 0.0559 1 
4.433 0.2103 
4.297 0.3787 
4.192 0.6173 
4.002 1.147 
3.733 2.043 
3.504 3.628 
3.063 7.873 
2.781 13.18 

4.538 0.06883 
4.6 18 0.09430 
4.473 0.3302 
4.327 0.6225 
4.444 0.8484 
4.140 1.795 
3.872 3.223 
3.574 6.589 
3.000 19.19 

6.024 
5.834 
6.180 
6.540 
6.252 
7.013 
7.722 
8.555 

Nu Pr”.lz6 = c(Ra)& (48) 

where c, a and b are constants and 

(Ra),, = F 
1 

is obtained from the Darcy-modified Rayleigh number 

*The precise value of Re,, is not available but published 
information on Darcy flow indicates that ReDL < 1 x 10m5, 
which is far below (Re),,, for any of the data obtained in the 
present study. 

lS3 0.5761 0.1680 
2S3 0.6644 0.4490 
3s3 0.7281 0.7020 
4s3 0.7853 1.367 
5s3 0.9188 2.517 
6S3 1.094 3.323 
7s3 1.395 4.593 
8S3 1.684 5.923 
9s3 1.916 7.579 

*Symbols as Table 2. 

39.19 0.001149 73.35 
37.80 0.003193 73.38 
36.43 0.005 192 73.41 
34.20 0.01080 73.46 
31.05 0.02200 73.54 
29.16 0.03 102 73.59 
27.16 0.04623 73.66 
25.89 0.06282 73.70 
23.05 0.0906 1 73.81 

10.34 
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by replacing K( = l/C) with l/C,-this parameter, 
which will be called the Forchheimer-modified 
Rayleigh number, represents the influence of the linear 
velocity term in Forchheimer’s equation upon the rate 
of heat transfer. The dimensionless quantity (CID/C,) 
represents the influence of the quadratic velocity term 
in Forchheimer’s equation-its contribution can be 
regarded as being a modification of the effect of the 
linear term. This reasoning is analogous to that 
proposed by Bejan and Poulikakos, who regard their 
parameter G as a factor that represents a degree of 
deviationfrom theDarcysolution.Thefactor Pr0.1z6in 
equation (48) was adopted from equation (43). The 
optimum values of c, a and b in (48) were found to be 
2.05, 3.17 and 0.0226, respectively, with which the 
correlation becomes 

0.0226 

Nu pro.126 = 2.05 (Ru);,~” ; j = 0.5. 

(49) 

Equation (49) is valid for 3 < (Re),, 6 100. A graph of 
equation (49) together with the relevant experimental 
data is shown in Fig. 8. The errors incurred by (49) with 
respect to the relevant experimental data are listed in 
Table 4. (See Nomenclature for error notation.) 

Equations (43) and (49) adequately correlate all the 
experimental data plotted in Fig. 7 except for the first 
four or five oil points (l-%3). These oil data exhibit a 
markedlydifferent trendfrom therest ofthedatathat lie 
in the low range of Ra. They were successfully 
correlated by pursuing a suggestion made in the closing 
senience of ref. Cl23 to the effect that viscous dissipation 
might be significant in the case ofnatural convection in 
porous media. 

In order to identify a measure of viscous dissipation 
in the present context, the energy equation, 
appropriately modified for natural convection in 
porous media and including the viscous dissipation 
term expressed in terms of Darcy’s law, was examined. 
For present purposes it was sufficient to consider the 
steady one-dimensional energy equation which is 
derived in the recent text by Bejan [13] and is 

Table 4. Errors incurred by correlation equations with respect 
to relevant experimental data 

E(md) E(rms) 

Darcy regime 
Equation (59); j = 0.5 5.01 6.75 
Equation (60); j = 0.32 4.88 6.20 
Equation (63); j = 0.5, E, 4.64 5.99 
Equation (64);j = 0.32, E, 4.45 5.75 

Forchheimer regime 
Equation (49); j = 0.5 1.27 1.90 
Equation (61);j = 0.32 1.25 1.86 
Equation (65); j = 0.5, E, 1.26 1.79 
Equation (66); j = 0.32, E, 1.27 1.74 

reproduced here as follows : 

8T k a2T vu2 

v;7;r=pc,ax2+ Kpc, (50) 

where v is the velocity in the x-direction. 
Equation (50) was rendered non-dimensional by 

means of the following transformations : 

V=f, X=$ and 4_ 

T- T 
m 

c 0 K-T,’ 

where D, is a characteristic length and 

V = K&T,- T,) 
c 

V 

is taken as the characteristic velocity [see equation 
(2811. When each term in equation (50) is transformed 
via the preceding dimensionless quantities, the result is 

W(Ts - T,)’ vz = W-T,) 3’4 

vD, ax pc,D: ax2 

+G- ( > F 2V? (51) 
P 

Multiplying equation (51) by Dz/(vAT) yields 

GrVg=k$+GeGr(V2) (52) 

where 

50 
-~: 

Gr = KgSDc(T,- Tm) 
v2 

is the Grashof number, 

2: 
10 50 100 500 

bl‘, 

FIG. 8. Graph of equation (49) and relevant data. 

Pr = 7 is the Prandtl number, 

and 

Ge=@$ is the Gebhart number. 

Equation (52) indicates that the temperature distri- 
bution depends only upon Gr, Pr and Ge. Con- 
sequently, the Nusselt number depends upon these 
same parameters ; that is, 

Nu = f(Gr, Pr, Ge). (53) 



130 R. M. FAND et al. 

According to the theory of dimensional analysis, an accomplished only if additional heat transfer data with 
alternative equivalent statement to equation (51) is different values of Ge become available. 

Nu = g(Ra, Pr, Ge) (54) 

since Ra = Gr Pr. The Gebhart number, which was 
also employed in [12], is the sought-for measure of 
viscous dissipation. The value of Ge for the silicone oil 
used here is approx. 10 times its value for water. This 
disparity in the value of Ge reveals why viscous 
dissipation for the present water experiments is 
negligible compared with its magnitude for the oil 
experiments. 

Second correlation : j = 0.32. It was shown in [S] that 
the influence of property variation on heat transfer by 
natural convection from horizontal cylinders can be 
taken into account more accurately by evaluating 
properties at j = 0.32 than by evaluating them at j = 
0.5 (the mean film temperature). In the present study 
it was found that j = 0.32 also yields improved results. 
With j = 0.32 the correlation procedures described 
above yield : 

Having identified a parameter that characterizes the 
viscous dissipation, the following hypothesis was 
adopted in order to correlate the errant oil data : 

Nu pro.0896 = 0.643 Ra”,694 

+ 8.40 x 106Ge sech Ra ; 0.001 < (Re),,, < 3 (60) 

and 
Nu Pr”.lz6 = 0.679 Ra0.646 + A; j = 0.5 (55) 

where A = f(Ge)g(Ra) and D, is taken to be the cylinder 
diameter D. This hypothesis is predicated upon the 
assumption that the ordinates of the first five oil data 
points in Fig. 7 differ from the predictions of equation 
(43) by an amount A, and that A can be represented by a 
function of Ge multiplied by a function of Ra. Next, it 
was hypothesized that 

0.13’ 

; 

3 < (Re),,, < 100. (61) 

The errors incurred by equations (60) and (61) are listed 
in Table 4. 

f (Ge) = m Ge” (56) 

where m and II are constants to be determined from 
experimental data. The present experimental data are 
insufficient to definitely determine the values of m and n, 
because Ge is nearly constant for the oil data under 
consideration and nearly negligible, by comparison, for 
the water data; therefore, all the oil data taken together 
represent a single datum for evaluating m and n-this 
point will be discussed further below. If n is arbitrarily 
chosen equal to 1, then 

Third correlation : the wall e$ect. It was observed that 
the errors incurred by the correlation equations 
presented above were greatest for the data obtained 
with the 4-mm glass spheres. This was attributed to the 
influence of the so-called ‘wall effect’, which is caused by 
the fact that the glass spheres of the porous medium are 
in point contact with (tangential to) the surface of the 
test specimen, and this results in a large increase in E 
near the heat transfer surface. In order to take the wall 
effect into account, at least partially, the value of E that 
appears in all correlation calculations was replaced by a 
‘wall corrected porosity’ E, defined as follows : 

f(Ge) = m Ge g(Ra). (57) 

Now, A can be calculated for each oil datum under 
consideration using (43), and so a plot of A vs Ra can be 
constructed. This was done and it was recognized and 
verified that A is closely approximated by 

A = m Ge sech Ra. (58) 

where m = 9.79 x 106. Hence, finally, equation (55) 
becomes 

Nu Pr”.lz6 = 0.679 Ra0.646 + m Gr sech Ra; j = 0.5 

(59) 

where m = 9.79 x lo6 if II = 1. 
Equation (59) is valid for 0.001 < (Re), , < 3. The 

errors incurred by (59) with n = 1 are listed in Table 4; 
A graph of (59) together with the relevant data points is 
shown in Fig. 9. 

where d/D is the ratio of the glass sphere diameter to the 
test cylinder diameter. The wall correction factor was 
chosen to be [l+ 1/2(d/D)3] for two reasons; first, 
because it approaches unity as d/D approaches zero ; 
and second, because porosity is a spatially-related 
quantity (hence the cube of d/D). The factor l/2 was 
selected by trial and error to yield optimum results. 
Correlations that include the wall correction will be 
identified by the symbol E,. 

The entire correlation procedure described above 
was repeated incorporating equation (62) with the 
following results : 

In concluding this discussion of equation (59), it is 
emphasized that the values of the constants m and n 
contained therein have not been uniquely determined. 
Thus, if n were chosen equal to 2, an equally 
representative correlation could have been determined 
which would contain a different (compensating) value 
of m. The definitive determination of m and n can be 

Nu Pro.124 = 0.653 Ru’.~~’ +9.97 x lo6 Ge sech Ra 

for a,, j = 0.5 and 0.001 < (Re)max < 3, (63) 

Nu Pro.o877 - 0 618 Ra0.698 + 8.54 x lo6 Ge sech Ra - . 

for cw, j = 0.32 and 0.001 < (Re),,, < 3, (64) 

Nupr0.'24 = 1.65 Ro0.3’9 
C D 

(-> 

0.0585 

d2 

for E,, j = 0.5 and 3 <: (Re),,, < 100, (65) 
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50 - N~Pr~.‘~~-9.79~10~ Ge sech Raz0.679 Ra”.646 
izO.5 

FIG. 9. Graph of equation (63) and relevant data. 

Nu pro.0s77 = 0 766 &“.374 

for E,, j = 0.32 and 3 <(Re) mex < loo. (66) 

DISCUSSION OF CORRELATIONS: ERRORS 

The errors listed in Table 4 for the Darcy regime are 
more than twice what can be attributed to errors in the 
measurements of heat flux and temperature. It is 
believed that the major source of the unaccounted-for 
error is uncertainty with regard to themagnitude ofs. In 
order to demonstrate the sensitivity of the heat transfer 
process to the magnitude of&, plots of K, C, and C, are 
presented in Fig. 10 for the 3-mm glass spheres. These 
plots show that, corresponding to a 1% change in E,* the 
value of K changes by 4%. Now, a 4% change in K 
produces a 2.6% change in Nu. Thus, Nu is very 
sensitive to the value ofs in the Darcy regime. However, 
Nu is considerably less sensitive to changes in E in the 
Forchheimer regime ; here, a 1% change in E produces a 
1% change in Nu. This is why the errors for the 
Forchheimer regime listed in Table 4 are substantially 
less than those for the Darcy regime. 

It is not likely that the value of s can be determined 
experimentally with an accuracy greater than 1%. the 
reason for this being that the packing of the matrices of 
the porous media is a stochastic process, and is, 
therefore, a product of ‘chance’. Even if the overall 

*E = 0.36 for all three media employed in this study-see 
Table 1. 
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FIG. 10. Graphs of K, C,, Cz and C,/C, as functions of E. 

average value of E is determined with great accuracy, it 
is likely that the porous medium will contain local 
variations in E that are impossible to detect. Thus, it 
appears difficult to acquire data and correlations that 
would incur errors appreciably less than those listed in 
Table 4. 

Equations (64) and (66), which contain the wall 
correction factor, are recommended above all others- 
the others have been reported primarily for 
development and comparison purposes. Equations (64) 
and (66) are considered superior not only because they 
exhibit the minimum errors (see Table 4) but also 
because they contain the wall correction factor 
Cl+ 1/2(d/O)7 which, it is expected, renders them 
applicable at somewhat higher values of the ratio d/D 
(say, 10 or 15% higher) than the maximum (d/D = 0.35) 
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employed in the present experiments. An expanded 
experimental investigation of the role of d/D will be 
undertaken in the near future. 
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CONCLUDING REMARKS REFERENCES 

The kind of flow that occurs at any point in a porous 
medium depends upon the Reynolds number. For 
natural convection in an infinite medium the Reynolds 
number always approaches zero with increasing 
distance from the heated surface. Therefore, the 
Reynolds number near a heated surface may be 
sufficiently high to cause Forchheimer flow, but 
somewhat further from this surface it will have 
diminished sufficiently in magnitude to incur Darcy 
flow, and at a still greater distance from the surface it 
will have diminished to the point where pre-Darcy flow 
occurs. These observations provide an explanation for 
the experimentally observed fact that the relatively 
small porous medium reservoir utilized in the present 
investigation adequately simulates an infinite medium ; 
the reason being, of course, that the local Reynolds 
number drops off rapidly with increasing distance from 
the test specimen and the pre-Darcy regime of flow is 
soon encountered, which is tantamount to encounter- 
ing a ‘zero velocity’ or ‘no-slip’ boundary. The 
extension of the medium beyond this no-slip boundary 
is superfluous with respect to the simulation of an 
infinite medium. 

1. 

2. 

3. 
4. 

5. 

6. 

In view of the preceding remarks one might well 
question the logic behind the correlation equations 
presented above for Darcy and Forchheimer flow, for 
these equations obviously do not account for their 
respective preceding kinds of flow. The answer to this 
question is that these equations are correlation for the 
Nusselt number, which is determined by the flow 
adjacent to the heat transfer surface, where the ‘highest’ 

type ofJow always occurs. However, a complete solu- 
tion to the problem, including the entire velocity 
and temperature fields, would require, in general, the 
simultaneous consideration of several kinds of flow. 

I. 

8. 

9. 

10. 

11. 

12. 

13. 

H. C. Hardee, Boundary layer solutions for natural 
convection in porous media, Sandia Laboratories Report 
No. SAND 76-0075 (1976). 
J. H. Merkin, Free convection boundary layers on 
axisymme’tric and two-dimensional bodies of arbitrary 
shape in saturated porous medium, Int. J. Heat Mass 
Transfer 22, 1461-1462 (1979). 
P.Cheng,ME627classnotes,UniversityofHawaii(1980). 
0. A. Plumb and J. C. Huenefeld, Non-Darcy natural 
convection from heated surfaces in saturate2 porous 
media, Int. J. Heat Mass Transfer 24, 765-768 (1981). 
A. Bejan and D. Poulikakos, The non-Darcy regime for 
vertical boundary layer natural convection in a porous 
medium. Int. .I. Heat Mass Transfer 27.117-122 (1984). 
P. Cheng and W. J. Minkowycz, Free cdnvection about’s 
vertical flat plate embedded in a porous medium with 
application to heat transfer from a dike, J. geophys. Res. 
82,2040-2044 (1977). 
J. Bear, Dynamics of Fluids in Porous Media. American 
Elsevier, New York (1972). 
R. M. Fand, E. W. Morris and M. Lum, Natural 
convection heat transfer from horizontal cylinders to air, 
water and silicone oils for Rayleigh numbers between 
3 x 10’ and 2 x lo’, Int. J. Heat Mass Transfer 20, 11, 
1173-1184(1977). 
B. Y. K. Kim, The resistance to flow in simple and complex 
porous media whose matrices are composed of spheres. 
M.S. thesis in Mechanical Engineering, University of 
Hawaii, supervised by R. M. Fand (1985). 
R. T. Phan, The thermophysical properties of a porous 
mediumcomposedofamatrixofglass ballssaturated with 
water. B.S. honors thesis, University ofHawaii, supervised 
by R. M. Fand (1983). 
E. M. Sparrow and D. R. Pfeil, Enhancement of natural 
convection heat transfer from a horizontal cylinder due to 
vertical shroudingsurfaces,J. Heat Transfer 106,124-130 
(1984). 
R. M. Fand and J. Brucker, A correlation for heat transfer 
by natural convection from horizontal cylinders that 
a&ounts for viscous dissipation, Int. J.. Heat Mass 
Transfer 26. 709-726 (1983). 
A. Bejan, donvection‘Hea; Transfer. John Wiley, New 
York (1984). 

CONVECTION THERMIQUE NATURELLE A PARTIR D’UN CYLINDRE HORIZONTAL 
NOYE DANS UN MILIEU POREUX 

R&m&-On prtsente les r&sultats d’une recherche expkrimentale sur la convection thermique naturelle g 
partir d’un cylindre horizontal noyb dans un milieu poreux r&al% par des sph&es de verre et sature d’eau ou 
d’huile silicone. On montre que le domaine global du nombre de Rayleigh Ra peut etre divist en deux r&ions, 
appelkes “basse” et “haute”, dans chacune desquelles le nombre de Nusselt se comporte diff&emment. On 
montre que la rtgion basse correspond B l’&coulement de Darcy, et Ra haute ri 1Bcoulement de Forchheimer. 
On pr&ente des equations pour Nu au rkgime de Darcy qui tiennent compte de la dissipation visqueuse et 
d’autres pour le r&me de Forchheimer. La variation des propri&s avec la temp&rature et l’effet de paroi sur la 
porositb (et par constquent sur le transfert thermique) sont considi& On donne une information sur la perte 

de charge de 1’6coulement dans le milieu poreux, en relation avec le transfert de chaleur. 
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WARMEUBERGANG BEI NATURLICHER KONVEKTION AN EINEM HORIZONTALEN 
ZYLINDER IN EINEM POR&EN MEDIUM 

Zusammenfassung-Diese Abhandlung zeigt Ergebnisse einer experimentellen Untersuchung des 
Warmeiibergangs bei natiirlicher Konvektion an einem horizontalen Zylinder, der in einer Zufallsschiittung 
von Glaskugeln liegt, welche mit Wasser oder mit Silikonol gesiittigt ist. Der gesamte Wertebereich der 
Rayleighzahlen, Ra, wird in zwei Teilbereiche untergliedert (oberer und unterer Bereich), in denen sich die 
Nusseltzahl, Nu, unterschiedlich verhalt. Es wird demonstriert, daD der untere Rayleighzahlbereich mit der 
Darcy-Stromung und der obere Bereich mit der Forchheimer-Striimung beschrieben werden kann. Es werden 
Korrelationsgleichungen fur Nu im Darcybereich angegeben, welche die Energiedissipation beriicksichtigen, 
und andere fiir den Forchheimerbereich, welche den ersten und zweiten Forchheimerkoeffizienten 
beeinhalten. Die Anderung der Stoffeigenschaften mit der Temperatur und der Randeinflug auf die Porositlt 
(und damit auf den Wlrmetibergang) wird betrachtet. Die Abhandlung enthiilt ebenfalls Informationen 
beziiglich des Striimungswiderstandes in poriisen Medien, die beim Studium der Wiirmetransportvirglnge 

beobachtet wurden. 

IIEPEHOC TEl-IJIA ECTECTBEHHOH KOHBEKHHEH OT FOPW30HTAJlbHOIO 
UHJIHH~PA, PACl-lOJlOXEHHO~0 B I-IOPHCTOH CPEAE 

AHHOTa4HR-npCnCTaBnCHbI pe3ynbTaTbl 3KCDepHMeHTaJlbHOTO BCCne~OBaHH5l TetUIOnepeHOCa eCTeCT- 

BeHHOii KOHBeKuEleii OT rOpkf30HTanbHOrO UHnHHJlpa,paCnOnO~eHHOrO B IIOpHCTOii CpeAe, COCTOXUeii 

A3 XBOTH'ICCKU paCIIpeneneHHbIX CTeKJIIIHHbIX IUapaKOB,lIO~yXteHHbIX B BOAy WI‘, CHJIIlKOHOBOe MaCnO. 

nOKa3aH0,'fTO BeCbnHana3oH 3Ha’ieHEii WiCJIahMl Ra MOXHOpa36HTb HanBerIoJIo6nacTH(ManbIX W 

6onbunix 3HaqeHEifi),~ Kolopbrx wcno HyCCenbTa F!.eneT ce6n no-pa3HoMy.npa 3~0~ 06naCTb ManbIX 

3Ha’ieHPiii SHCJla Ra COOTBeTCTByeT Te'feHUH) AapCSS,a BbICOKEiX-@Op=IXeiiMepa.&ZCTaBneHbI 3aBHCH- 

MOCTH nJIK 411Cna Nu B peWiMeAapCH,KOTOpbIe yWTbIBaH)T BII3KyIO ~CCBllaIWO,H B peXOiMe @Op'i- 

xehfepa, conepEawie nepsbi a ~T0p0l Ko++iuHeHTbI Qopqxeihfepa.. npuHnh4aeTcn BO BHkiidaHHe 

BnflKH~e3aBwsih4ocT5iTenno~~3wiecK~x~~0Bcr~oT rehmeparypbrri ycnoeHii uacrerikeua Tennonepe- 

HOC. npenCTaBneHb1 naHHbIe 0 J'HApOLWiHaMI14eCKOM COlTpOTHBJIeHHEi B lIOp&iCTbIX CpCnaX, ITOJIyYCHHbIC 

npw uccnenoaarfmi nponeecca TennonepeHoca. 


